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Outline

• Why multigrid methods?

• Algebraic multigrid software

• How does multigrid work?

• Hypre software library – interfaces and solvers

– Why different interfaces?

– Solvers and data structures

• Effect of complexity on performance

• Hands-on exercises
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Multigrid linear solvers are optimal (O(N) operations), 
and hence have good scaling potential

• Weak scaling – want constant solution time as problem size grows in proportion 

to the number of processors
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Available multigrid software

• ML, MueLu included in Trilinos

• GAMG in PETsc

• The hypre library provides various algebraic 
multigrid solvers, including multigrid solvers for 
special problems e.g. Maxwell equations, …

• All of these provide different flavors of multigrid and 
provide excellent performance for suitable 
problems

• Focus here on hypre
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The                software library provides structured 
and unstructured multigrid solvers

▪ Used in many applications

▪ Displays excellent weak 

scaling and parallelization 

properties on BG/Q type 

architectures

Magneto-

hydrodynamics
Electro-

magnetics

Facial surgery
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Multigrid (MG) uses a sequence of coarse grids 
to accelerate the fine grid solution

Error on the fine grid

Error approximated on 

a smaller coarse grid

restriction

prolongation

(interpolation)

Multigrid

V-cycle

smoothing

(relaxation)

Algebraic multigrid

(AMG) only uses 

matrix coefficients

No actual grids!
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– Select coarse “grids” 

– Define interpolation:

– Define restriction:

– Define coarse-grid operators: 

AMG Building Blocks

Setup Phase:

Solve Phase:
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(Conceptual) linear system interfaces are necessary 
to provide “best” solvers and data layouts

Data Layouts

structured composite block-struc unstruc CSR

Linear Solvers

PFMG, ... FAC, ... Split, ... MLI, ... AMG, ...

Linear System Interfaces
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Why multiple interfaces?  The key points

• Provides natural “views” of the linear system

• Eases some of the coding burden for users by 
eliminating the need to map to rows/columns 

• Provides for more efficient (scalable) linear solvers

• Provides for more effective data storage schemes 
and more efficient computational kernels 
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hypre supports these system interfaces

• Structured-Grid (Struct)
– logically rectangular grids

• Semi-Structured-Grid (SStruct)
– grids that are mostly structured

– Examples: block-structured grids, 

structured adaptive mesh refinement grids, 

overset grids

– Finite elements

• Linear-Algebraic (IJ)
– general sparse linear systems



ATPESC 2017, July 30 – August 11, 201711

SMG and PFMG are semicoarsening multigrid 
methods for structured grids

• Interface: Struct, SStruct

• Matrix Class: Struct

• SMG uses plane smoothing in 3D, 

where each plane “solve”

is effected by one 2D V-cycle

• SMG is very robust

• PFMG uses simple pointwise 

smoothing, and is less robust

• Constant-coefficient versions!
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Structured-Grid System Interface
(Struct)

• Appropriate for scalar applications on structured grids with a 
fixed stencil pattern

• Grids are described via a global d-dimensional index space
(singles in 1D, tuples in 2D, and triples in 3D)

• A box is a collection of cell-centered indices, described by 
its “lower” and “upper” corners

• The grid is a collection of boxes

• Matrix coefficients are defined via
stencils
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• Stencil

• Grid boxes: [(-3,1), (-1,2)]
[(0,1), (2,4)]                              

• Data Space: grid boxes + ghost layers:
[(-4,0), (0,3)] , [(-1,0), (3,5)]

• Data stored 

• Operations applied to stencil entries per box (corresponds to matrix 
(off) diagonals from a matrix point of view)

StructMatrix data structure
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BoomerAMG is an algebraic multigrid method 
for unstructured grids

• Interface: SStruct, IJ

• Matrix Class: ParCSR

• Originally developed as a general matrix 
method (i.e., assumes given only A, x, and b)

• Various coarsening, interpolation and 
relaxation schemes 

• Automatically coarsens “grids”

• Can solve systems of PDEs if additional 
information is provided

• Can also be used through PETSc and Trilinos
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ParCSRMatrix data structure

• Based on compressed sparse row 
(CSR) data structure

• Consists of two CSR matrices:

– One containing local coefficients 
connecting to local column indices

– The other (Offd) containing coefficients with column 
indices pointing to off processor rows

• Also contains a mapping between local and global column 
indices for Offd

• Requires much indirect addressing, integer computations, 
and computations of relationships between processes etc, 

A =

Proc 0

Proc 1

Proc p
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Complexity issues

• Coarse-grid selection in 
AMG can produce unwanted 
side effects

• Operator (RAP) “stencil growth” 
reduces efficiency

• Not so much an issue for 
SMG and PFMG, for which 
stencil growth is limited 
(to at most 27 points per 
stencil in 3D) 

• For BoomerAMG we will therefore also consider complexities:

– Operator complexity: 𝐶𝑜𝑝=(σ𝑖=0
𝐿 𝑛𝑛𝑧(𝐴𝑖))/𝑛𝑛𝑧(𝐴0)

– Generally would like this to be less than 2, close to 1

– Affects flops and memory

• Can ameliorate with more aggressive coarsening
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Algebraic multigrid as preconditioner

• Generally algebraic multigrid methods are used as 

preconditioners to Krylov methods, such as 

conjugate gradient (CG) or GMRES

• This often leads to additional performance 

improvements
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Hands-on Exercises

• Equation:   𝜑−∆∙𝛽𝛻𝜑= RHS , Dirichlet boundary 
conditions

• Grid: 128 x 128 x 128, block structured, consisting of (at 
least) 8 subgrids

RHS: solution:
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• This work was performed under the auspices of the U.S. Department 
of Energy by Lawrence Livermore National Laboratory under contract 
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